ASSIGNMENT NO. 6

(1) Cyber Attacks and Digital Terrorism – IS/IT strategies for organizations must provide adequate security from cyber attacks and digital terrorism. On that note, answer the following questions.

a. List a few reasons why cyber attacks and digital terrorism occur.

b. What are viruses, worms, Trojan horses, logic bombs and DOS attacks?

c. What is information theft? What is identity theft? What are the differences and implications of information and identity theft in the digital world?

(Reference – The Good Book-1, Chapter 16, on the subject of Social, Ethical and Legal Issues)

(2) Securing applications from hackers – Mini Case for Assignment 6 Question 2. This document about web application attacks was written by a security analyst working for an important government organization in Malaysia, NISER (National ICT Security and Emergency Response) Center.

The correct IS/IT strategies for an organization must include sufficient protection from computer hackers. Read the short case study provided at the end of this assignment document and answer the following questions:

a. What are the mechanisms of the following 3 types of hacker attacks?

 - Source Code Disclosure
 - SQL query positioning
 - Session hijacking

b. The term Intrusion Detection System (IDS) is a very important topic that every computer security personnel must know. What is it and how does it work? (Please go and find out through your own resources to answer this question).

(3) Computer Security – Computer security is a never-ending and ongoing problem for organizations with IS/IT assets.

List down and describe the responsibilities of the individual user in maintaining the security of the organization’s computers.

(Reference – The Good Book-1, Chapter 16, on the subject of Social, Ethical and Legal Issues, Review Question No. 5)
(5) **Software Licensing and Use** - Today the adoption of open source software applications is increasingly being considered by many IS/IT Managers in both profit-making and non-profit making organizations.

 a. Explain the difference(s) between a copyright and a patent on a computer program.

 b. What is copyleft? Hint: It has to do with the open source GPL (GNU General Public License). Go to the internet to find out about it and answer this question.

 c. The open source software and free software usually share the same licenses, but according to the Free Software Foundation (FSF), the open source movement is philosophically different from the free software movement. What are the differences? Go to the internet to find out about it and answer this question.

 d. What are the issues of internet file sharing? Are there any resolutions to the issues? Describe what you know of the current status on the subject.

(Reference – The Good Book-1, Chapter 16, on the subject of Social, Ethical and Legal Issues)
 MOST companies today use the Web to do business with customers, employees, suppliers and others. This is because it is easier to maintain a Web-based application than a Windows-based one. But how can we be sure that a Web-based application is secured? Or that data is being shared only by the authorised users?

The Gartner Group estimates that 75 per cent of cyber attacks today are at the application level. And about 97 per cent of over 300 Web sites audited are vulnerable to Web application attacks.

The US Federal Bureau of Investigation also reveals that 95 per cent of the companies are hacked from Web applications, and only five per cent of them are aware of the attacks (http://conference.hackinthebox.org/ hitbseconf2005kl/materials/TT-Shreeraj-Shah-Webhacking-Kungfu.pdf)

From the figures, we can deduce that most company Web sites are prone to cyber attacks, and some of these companies are not aware that their Web applications have vulnerabilities that can be exploited by hackers.

According to statistics published by the National ICT Security and Emergency Response Centre, there have been significant increases in Web defacement incidents. In the first quarter of this year, there were 256 Web defacements involving both public and private Web sites, compared to the previous quarter which recorded 42 of such incidents.

To have a secure Web application, developers of the application must know each attribute such as query string, form, cookie, script, etc, because they are vulnerable. These attributes can be exploited by an attacker and expose sensitive company information if they are not used securely.

Web application attacks. There are two types of Web application attacks: automated and manual. Automated attacks can be used to exploit a Web application using automated Web application attack tools such as wget, curl, blackwidow and teleport pro. Using these automated tools, crawling and attacks can be done shortly. This type of attack can be avoided by setting "honey traps" using HTTP Module (used in pre/post-processing of requests). The attacker can be put into an infinite loop using defence trick once it is trapped. To launch manual attacks, hackers must conduct information gathering such as address identification, port scanning, social engineering and vulnerability scanning to find out vulnerabilities that can be exploited.

Common Web application hacking methods include:

Source code disclosure:
The attacker uses this technique to obtain the source code of the server-side script such as active server page (ASP), Java server page (JSP) and PHP hypertext preprocessor (PHP) files, to get information on the Web application logic such as database structure, source code comments and parameters.

There are two types of malicious code injections which may allow the source code disclosure technique to be used: client-side code injection and server-side code injection.

An example of client-side code injection is cross-site scripting attacks that occur when the attackers embed malicious code such as script into a hyperlink. When the user clicks on the hyperlink, the malicious code will be executed at the Web server, which creates an output page containing the malicious content that can lead to internal data disclosure.
An example of server-side code injection is remote command execution that occurs when the attacker injects PHP/ASP code which can cause arbitrary command execution on the server.

This problem occurs because of poor design and written applications. Web developers should include exception handling in the programming so errors can be handled within the code. The errors should be logged and not displayed at the Web browser.

All inputs such as data types, buffer sizes and meta-characters should be sanitised and validated before being passed to the internal application logic. To ensure that a Web application is secured from this kind of attack, the developer should follow the secure coding practices to make sure that no "active code" is injected as data contents.

SQL query poisoning:

Normally, Web applications send query strings and their parameters to the database server to get the requested data from the database. Attackers may take advantage of this because they can embed SQL commands inside these parameters, and this is called SQL query poisoning. This kind of attack may lead to back-end database compromise.

SQL query poisoning attacks occur because there is no input validation for all inputs from the client. This is a result of bad programming practice.

A database should be configured correctly to eliminate unnecessary database users and stored procedures. Using alternative SQL query constructions such as stored procedures and prepared statements will overcome SQL query poisoning problems because the SQL string cannot be altered.

Session hijacking:

Hypertext transfer protocol (HTTP) connections are stateless. To keep track of an application's state when the application runs, an HTTP cookie is used. Cookies will be destroyed when the user logs out from the system.

Nowadays, there are tools that can be used to intercept HTTP connections and alter the cookies' value, and this is called session hijacking. If the attackers successfully hijack a session, they can gain access to all of the user's data.

Session identifiers, which are unique and generated randomly, can be used to prevent such attacks. These identifiers are transmitted between the client and the server. To secure session identifiers, make sure that they are not stored in the hidden field, and encrypt them to prevent captured, brute-forced or reverse-engineered exploitation.

Conclusion:

Web application attacks are increasing drastically because there is a lack of knowledge in securing the applications, especially during the development and deployment stages of the applications. To control or avoid this menace, we must ensure that security is being implemented not only during the coding stage, but also the deployment stage.

The operations of a Web application must be monitored by the administrator so any exploits can be detected earlier and damages can be minimised or avoided such as using an intrusion detection system to monitor and filter Web traffic. It is also recommended for all organisations to conduct a security audit assessment to ensure that an application is secured before it is published to the public.