TDI2131 Digital Image Processing

Color Image Processing
Lecture 10

John See
Faculty of Information Technology
Multimedia University

Some portions of content adapted from Zhu Liu, AT&T Labs. Most figures from Gonzalez/Woods.
Some Announcements

• **Assignment 3** is out.
 – Submission deadline: **11.59PM, 28 April 2010 (Wed, Week 14)**. No further extensions possible!
 – Presentation – **29 April 2010, 4-6pm (Thurs, Week 14)**

• You are to work in groups of 1-2 people (max. 2)

• **Term Test, Week 12** – **12 April 2010 (Mon), 8pm, FIT CR2003 (usual lecture room)**
Lecture Outline

• Color Perception

• Color Representation
 – Trichromatic Color Mixing Theory
 – Color Models
 – Conversions between Color Models

• Pseudocolor Image Processing
 – Intensity Slicing
Light is part of the EM Wave
Illuminating & Reflecting Sources

- Colors that humans or some animals perceive in an object – determined by nature of the light reflected from the object.
- A “body” that reflects light balanced in all visible wavelengths appears WHITE to the observer.
- A “body” that favors reflectance in a limited range of the visible spectrum shows some shades of color.
Illuminating & Reflecting Sources

• **Illuminating Sources** (primary light)
 – Emit light (e.g. the sun, light bulb, TV monitors)
 – Perceived color depends on emitted frequency
 – Follow additive rule – R+G+B = White

• **Reflecting Sources** (secondary light)
 – Reflect an incoming light (e.g. the color dye, matte surface, cloth)
 – Perceived color depends on reflected material
 – Follow subtractive rule – R+G+B = Black
Characterization of Light

• Central to the “science of color”

• If the light is **achromatic** (void of color), its only attribute is its **intensity**, or amount – monochrome, grayscale

• Chromatic light spans the EM spectrum from 400–700nm. It has 3 basic quantities:

 – **Radiance** – amount of energy from source
 – **Luminance** – amount of energy perceived by observer
 – **Brightness** – a subjective descriptor, not possible to measure, describes color sensation
Tri-chromatic Color Mixing

- Tri-chromatic color mixing theory
 - Any color can be obtained by mixing three primary colors with a right proportion

- Primary colors for illuminating sources
 - Red, Green Blue (RGB)
 - Color monitor works by mixing red, green and blue intensities – CRT monitors use separate color guns, LCD mixes three subpixels to generate a single color pixel.

- Primary colors for reflecting sources
 - Cyan, Magenta, Yellow (CMY)
 - Color printer works by using cyan, magenta, yellow and black dyes (CMYK)
RGB vs CMY

Magenta = Red + Blue
Cyan = Blue + Green
Yellow = Green + Red

Magenta = White - Green
Cyan = White - Red
Yellow = White - Blue
Color Image Composition

Red
Green
Blue
Attributes of Color

- To represent/describe color in an intuitive way, using properties easy for human interpretation, use the attributes of **brightness** (luminance), **hue** and **saturation** (both represent chromaticity)

- Represented by a “color cone” or “color solid”

- These attributes are used in the HSI/HSV color model
Tristimulus Values

• Tristimulus Value
 – The amounts of red, green and blue needed to form any particular color are called the tristimulus values, denoted by X, Y and Z.
 – Trichromatic coefficients:

\[
x = \frac{X}{X + Y + Z}, \quad y = \frac{Y}{X + Y + Z}, \quad z = \frac{Z}{X + Y + Z}.
\]

\[x + y + z = 1\]

– Only two chromaticity coefficients are necessary to specify the chrominance of a light
CIE Chromaticity Diagram

- **CIE** (Commission Internationale de L'Eclairage, International Commission on Illumination) system of color specification
 - X axis: red, Y axis: green
 - e.g. GREEN: x: 25%, y: 62%, z:13%
 - Colors on the boundary = spectrum colors at highest saturation
Color Gamut

- Each color model has different color range (or gamut). RGB model has larger gamut than CMY.
- Thus, some color that appears on a screen may not be printable and is replaced by the closest color in the CMY gamut.
- A line segment indicates all colors that can be produced by mixing two colors corresponding to the endpoints of the line.
Color Models

• **Color Specification** – 3 primary or secondary colors
 - Red, Green, Blue
 - Cyan, Magenta, Yellow

• **Luminance and Chrominance Specification**
 - HSB or HSI (Hue, Saturation, and Brightness or Intensity)
 - YIQ (used in NTSC color TV)
 - YCbCr (used in digital color TV)

• **Amplitude Specification**
 - 8 bits per color component, or 24 bits per pixel
 - Total of 16 million colors
 - A 1k x 1k true RGB color requires 3 MB memory
RGB Color Model

RGB 24-bit color cube
CMY and CMYK Color Models

- High-end display cards/monitors provide rendition of colors in a 24-bit RGB true color image, BUT some applications/systems are limited

- Sometimes, it makes no sense to use more than a few hundred colors...

- Given the variety of systems in use today, it is of interest to have a subset of colors that are likely to be reproduced faithfully, reasonably independent of viewer hardware capabilities – safe RGB colors or all-systems-safe colors

- In Internet applications, they are called safe Web colors or safe browser colors.
CMY and CMYK Color Models

- There are 216 safe RGB colors

FIGURE 6.10
(a) The 216 safe RGB colors.
(b) All the grays in the 256-color RGB system (grays that are part of the safe color group are shown underlined).

FIGURE 6.11 The RGB safe-color cube.
CMY and CMYK Color Models

- Conversion between RGB and CMY (assuming max value is 1)

\[
\begin{bmatrix}
C \\
M \\
Y
\end{bmatrix} = \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} - \begin{bmatrix}
R \\
G \\
B
\end{bmatrix}, \quad \begin{bmatrix}
R \\
G \\
B
\end{bmatrix} = \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} - \begin{bmatrix}
C \\
M \\
Y
\end{bmatrix}.
\]

- Equal amounts of Cyan, Magenta, and Yellow produce black. In practice, this produce a muddy-looking black. To produce true black, a fourth color, black is added, which is specified in CMYK color model as “K”. The CMYK model is commonly used by printers and publishers.
HSI Color Model

- **Hue**: Dominant colors as perceived by an observer. It is an attribute associated with the dominant wavelength

- **Saturation**: Relative purity or amount of white light mixed with a hue. The pure spectrum colors are fully saturated. e.g. pink and lavender are less saturated

- **Intensity**: Reflects the brightness of the color
HSI Color Model

- **Hue**: Dominant colors as perceived by an observer. It is an attribute associated with the dominant wavelength.

- **Saturation**: Relative purity or amount of white light mixed with a hue. The pure spectrum colors are fully saturated. e.g. pink and lavender are less saturated.

- **Intensity**: Reflects the brightness of the color.
HSI Color Model -- Illustrations

HSI model is based on triangular and circular color planes
Conversions between RGB and HSI

• Converting color from RGB to HSI

\[
H = \begin{cases}
\theta & \text{if } B \leq G \\
360 - \theta & \text{if } B > G
\end{cases} \quad \text{with} \quad \theta = \cos^{-1}\left(\frac{1}{2} \left[\frac{(R-G)+(R-B)}{[(R-G)^2 + (R-B)(G-B)]^{1/2}} \right] \right)
\]

\[
S = 1 - \frac{3}{(R+G+B)} \min(R, G, B)
\]

\[
I = \frac{1}{3} [R + G + B]
\]

• Converting color from HSI to RGB

RG sector (0 \leq H < 120)

\[
B = I (1 - S)
\]

\[
R = I \left(1 + \frac{S \cos H}{\cos(60-H)}\right)
\]

\[
G = 1 - (R + B)
\]

GB sector (120 \leq H < 240)

\[
R = I (1 - S)
\]

\[
G = I \left[1 + \frac{S \cos(H - 120)}{\cos(60 - (H - 120))}\right]
\]

\[
B = 1 - (R + G)
\]

BR sector (240 \leq H < 360)

\[
G = I (1 - S)
\]

\[
B = I \left[1 + \frac{S \cos(H - 240)}{\cos(60 - (H - 240))}\right]
\]

\[
R = 1 - (G + B)
\]
Comparison of Different Color Spaces
YIQ Color Coordinate System

- YIQ is defined by the National Television System Committee (NTSC)
 - Y describes the luminance, I and Q describes the chrominance
 - A more compact representation of the color
 - YUV plays similar role in PAL and SECAM

- Conversion between RGB and YIQ

\[
\begin{bmatrix}
Y \\
I \\
Q
\end{bmatrix} = \begin{bmatrix}
0.299 & 0.587 & 0.114 \\
0.596 & -0.274 & -0.322 \\
0.211 & -0.523 & 0.311
\end{bmatrix} \begin{bmatrix}
R \\
G \\
B
\end{bmatrix}, \quad \begin{bmatrix}
R \\
G \\
B
\end{bmatrix} = \begin{bmatrix}
1.0 & 0.956 & 0.621 \\
1.0 & -0.272 & -0.649 \\
1.0 & -1.106 & 1.703
\end{bmatrix} \begin{bmatrix}
Y \\
I \\
Q
\end{bmatrix}
\]
YUV/YCbCr Coordinate System

- YUV is the color coordinate used in color TV in PAL system, somewhat different from YIQ
- YCbCr is the digital equivalent of YUV, used for digital TV, with 8 bits for each component, in range of 0-255.

\[
\begin{bmatrix}
Y \\
C_b \\
C_r
\end{bmatrix} =
\begin{bmatrix}
0.257 & 0.504 & 0.098 \\
-0.148 & -0.291 & 0.439 \\
0.439 & -0.368 & -0.071
\end{bmatrix}
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix} +
\begin{bmatrix}
16 \\
128 \\
128
\end{bmatrix}
\]

\[
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix} =
\begin{bmatrix}
1.164 & 0.000 & 1.596 \\
1.164 & -0.392 & -0.813 \\
1.164 & 2.017 & 0.000
\end{bmatrix}
\begin{bmatrix}
Y - 16 \\
C_b - 128 \\
C_r - 128
\end{bmatrix}
\]
Criteria of Choosing Color Coordinates

• The type of representation depends on the applications at hand
 – For display or printing, choose primary colors so that more colors can be produced. E.g. RGB for displaying and CMY for printing
 – For analytical analysis of color differences, HSI is more suitable
 – For transmission or storage, choose a less redundant representation, e.g. YIQ or YUV or YCbCr
A Past Year FYP...

- “RGB-H-CbCr Skin Colour Model for Human Face Detection”, Nusirwan Anwar & Kit Chong Wei, FYP 2006
 - Developed a new color-based technique (RGB-H-CbCr) of segmenting skin regions for face detection
 - Research paper published at M2USIC'06 conference in KL
And this year...

- Your turn to give it a try – **Assignment 3 on Automatic Color-based Face Detection**
- How does automatic face detection work using image processing?
Pseudocolor Image Processing

- **Intensity Slicing**: Display different gray levels as different colors
 - Can be useful to visualize medical/scientific/vegetation imagery
 - E.g. If one is interested in features with a certain intensity range of several intensity images

- **Frequency slicing**: Decomposing an image into different frequency components and represent them using different colors.
Intensity Slicing

Pixels with gray-scale (intensity) value in the range of \((f_{i-1}, f_i)\) are rendered with color \(C_i\)
Example: Intensity Slicing

FIGURE 6.20 (a) Monochrome image of the Picker Thyroid Phantom. (b) Result of density slicing into eight colors. (Courtesy of Dr. J. L. Blankenship, Instrumentation and Controls Division, Oak Ridge National Laboratory.)

FIGURE 6.22 (a) Gray-scale image in which intensity (in the lighter horizontal band shown) corresponds to average monthly rainfall. (b) Colors assigned to intensity values. (c) Color-coded image. (d) Zoom of the South American region. (Courtesy of NASA.)
Recommended Readings

- Digital Image Processing (3rd Edition), Gonzalez & Woods,
 - Chapter 6: Color Image Processing
 - 6.1-6.5 (Week 10)