TDL2131 Digital Image Processing

Morphological Image Processing
Lecture 8

John See
Faculty of Information Technology
Multimedia University

Some portions of content adapted from CYPe and Zhu Liu's notes. Most figures from Gonzalez/Woods
Lecture Outline

• Mathematical Morphology
• Review on Set Theory
• Basic Morphological Methods
 – Dilation
 – Erosion
 – Opening
 – Closing
• Hit-or-Miss Transform
Some Announcements

• **Assignment 2** has been released. Deadline is on the **Monday of Week 11**. Total duration given is about 4 weeks (including your mid-term break), so you should already be working on it.

 – Please consult me if you need to. I'm willing to discuss if you have any doubts on your methods, **BUT** i will not give any direct suggestions of how to solve the problem.
Morpho...

- **Morphology** – Branch of biology that deals with the form and structure of organisms without consideration of function.

- **Mathematical Morphology** – Mathematical tool for processing shapes in image, including boundaries, skeletons, convex hulls, etc.

- The operations of mathematical morphology are defined as **set operations**.

- **Morphological Operations** are originally developed for bilevel (binary) images for shape and structural manipulations.
Binary Image Morphology

• A binary image can be considered as a set by considering “white” pixels as elements in the set (foreground) and “black” pixels as outside the set (background)

• Morphological operators can:
 – Thin,
 – Thicken,
 – Find boundaries,
 – Find skeletons (medial axis),
 – Convex Hull, and more
Structuring Element (SE)

- The operations of binary morphology input a binary image B and a structuring element S
- The structuring element S is usually another smaller binary image or sub-image
 - It represents a shape, can be of any size and have arbitrary structure that can be represented by a binary image
 - Members and Origin (center of gravity) of SE are specified
Review of Set Theory: Definitions & Notations

• **Set** (Ω)
 - A collection of objects (elements)

• **Membership** (\in)
 - If ω is an element (member) of a set Ω, we write $\omega \in \Omega$

• **Subset** (\subseteq)
 - Let A, B are two sets. If for every $a \in A$, we also have $a \in B$, then the set A is a *subset* of B, that is, $A \subseteq B$
 - If $A \subseteq B$ and $B \subseteq A$, then $A = B$.

• **Empty set** (\emptyset)
Definitions & Notations (cont'd)

- **Complement set**
 - If \(A \subset \Omega \), then its complement set \(A^c = \{ \omega \mid \omega \in \Omega, \text{ and } \omega \notin A \} \)

- **Union (\(\cup \))**
 - \(A \cup B = \{ \omega \mid \omega \in A \text{ or } \omega \in B \} \)

- **Intersection (\(\cap \))**
 - \(A \cap B = \{ \omega \mid \omega \in A \text{ and } \omega \in B \} \)

- **Set difference (\(\setminus \))**
 - \(B \setminus A = B \cap A^c \)
 - Note that \(B \setminus A \neq A \setminus B \)

- **Disjoint set**
 - \(A \) and \(B \) are disjoint (mutually exclusive) if \(A \cap B = \emptyset \)
Set Operations

Figure 9.1
(a) Two sets A and B. (b) The union of A and B. (c) The intersection of A and B. (d) The complement of A. (e) The difference between A and B.
Set Relations

• **Translation:** $(A)_z = \{a: a = a + z, a \in A\}$

• **Reflection:** $B_r = \{b: b = -b, b \in B\}$
Logical Operations between Binary Images

FIGURE 9.3 Some logic operations between binary images. Black represents binary 1s and white binary 0s in this example.
Basic Morphological Operations

- The basic operations of binary morphology are **dilation**, **erosion**, **closing**, and **opening**
 - **Dilation** enlarges a region
 - **Erosion** makes a region smaller
 - A **Closing** operation can close up internal holes in a region and eliminate bays along boundaries
 - An **Opening** operation can get rid of small portions of the region that jut out from the boundary (spurs, bridges)
What are morphological operations for?

• Some applications:
 – Binary morphology can be used to extract primitive features of an object that can be used to recognize/classify the object thereafter
 – A shape matching system can use morphological feature detection to rapidly detect primitives that are used in object recognition
Dilation

- Dilation of set B by structuring element S:

$$B \oplus S = \{ x_i \mid (S_x^r \cap B) \neq \emptyset \} = \bigcup_{b \in B} S_b$$

- New set $C = B \oplus S$ is composed of all the points obtained by replacing every point (x,y) in B with a copy of S, placing the origin point $(0,0)$ of S at (x,y). This replacement operation works vice versa.
Example: Dilation

H, 3x3, origin at the center

H, 5x3, origin at the center

Dilation enlarges a set.
Example: Dilation

- F
- G
- H, 3x3, origin at the center

Note that the narrow ridge is closed
Erosion

- Erosion of set B by structuring element S:

$$B \ominus S = \{ x_i \mid S_x \subseteq B \} = \{ b \mid b + s \in B, \forall s \in S \}$$

- New set $C = B \ominus S$ is composed of all the points (x,y) for which S is in B. This can be done by moving S over B, find all the places it will fit completely, and for each such place, mark down the point corresponding to the origin $(0,0)$ point of S.

Eroding B with a 3x3 structuring element S of ones, centered at origin
Example: Erosion

H, 3x3, origin at the center

H, 5x3, origin at the center

Erosion shrinks a set
Example: Erosion

F

G

H, 3x3, origin at the center
Structuring Element

- The shape, size and orientation of the structuring element (SE) depend on application usage.
- A symmetrical one will enlarge or shrink the original set in all directions.
- A vertical one, will only expand or shrink the original set in the vertical direction.
Applications of Dilation & Erosion

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

FIGURE 9.5
(a) Sample text of poor resolution with broken characters (magnified view).
(b) Structuring element.
(c) Dilation of (a) by (b). Broken segments were joined.
Applications of Dilation & Erosion

FIGURE 9.7 (a) Image of squares of size 1, 3, 5, 7, 9, and 15 pixels on the side. (b) Erosion of (a) with a square structuring element of 1’s, 13 pixels on the side. (c) Dilation of (b) with the same structuring element.
Opening & Closing: Intuitive Interpretation

- **Dilation** expands an object
- **Erosion** contracts an object
- **Opening**?
 - Smoothens contours, enlarges narrow gaps, eliminates thin protrusions and ridges
- **Closing**?
 - Fills narrow gaps, holes and small breaks
Opening

- **Opening**: Like “smoothing from the inside”
- **Erosion followed by Dilation**

\[B \circ S = (B \ominus S) \oplus S = \bigcup \{ S_x \mid S_x \subseteq B \} \]

- A union of all translations of \(S \) that fit inside \(B \)
Example: Opening

F

$F \Theta H$

$(F \Theta H) \oplus H$

H, 3x3, origin at the center
Closing

- **Closing**: Like “smoothing from the outside”
- **Dilation followed by Erosion**

\[
B \bullet S = (B \oplus S) \ominus S
\]

- All translations of S that have nonempty intersections with B
Example: Closing

F

$F \oplus H$

$(F \oplus H) \ominus H$

H, 3x3, origin at the center
Example: Opening & Closing

FIGURE 9.10
Morphological opening and closing. The structuring element is the small circle shown in various positions in (b). The dark dot is the center of the structuring element.
Duality Between Operators

- The complement of a dilation is equal to the erosion of a complement, and vice versa
 \[A \oplus B = \overline{A \ominus B_c} \]
 \[A \ominus B = \overline{A \oplus B_c} \]

- The complement of an closing is equal to the opening of a complement, and vice versa
 \[A \bullet B = \overline{A \circ B_c} \]
 \[A \circ B = \overline{A \bullet B_c} \]
Idempotency: Opening & Closing

- Applying opening and closing more than once has no further effect

\[(A \circ B) \circ B = (A \circ B)\]
\[(A \bullet B) \bullet B = (A \bullet B)\]
Hit-or-Miss Transform

• Hit-or-Miss Transform is a powerful method for finding shapes, and their locations in images

• Can be defined entirely in terms of erosion only

\[A \otimes B = (A \ominus B_1) \cap (A^c \ominus B_2) \]

• Useful for detecting specific shapes that are intended to extract, e.g. squares, triangles, ridges, corners, junctions, etc.
Hit-or-Miss Transform

• Steps:
 – Perform an erosion $A\ominus B_1$ with B_1 being the SE shape that we intend to find.
 – Next, erode the complement of A with B_2, a SE that is the border that encloses around the shape B_1.
 – The intersection of the two erosion operations would produce just one pixel at the center position of the found shape, resulting in a “hit”. Other parts of set A which did not return anything are considered “miss”.

Hit-or-Miss Transform

(a) Set A, (b) A window W and the local background of X w.r.t. W, $W-X$. (c) A^c. (d) $A \Theta X$

Intersection of (d) and (e) shows the location of the origin of X, as desired.
SE with “Don't Care” Entries

• Previous examples of SEs do not contain “Don't Care” entries
• For hit-or-miss transform, structuring elements have:
 – 1 – foreground
 – 0 – background
 – X – don't care
• In some implementations, the values in a SE are created differently to accommodate all 3 types, e.g. +1: foreground, -1: background, 0: don't care
SE with “Don't Care” Entries

• Output is 1 if there is a match for both foreground or background pixels. Likewise, output is -1 if there is no match.

• Note that the “don't care” pixels are not evaluated (anything multiplied by 0 is 0!).

\[
\begin{bmatrix}
-1 & -1 & -1 \\
0 & 1 & 0 \\
1 & 1 & 1 \\
\end{bmatrix} \cdot \begin{bmatrix}
-1 & -1 & -1 \\
1 & 1 & -1 \\
1 & 1 & 1 \\
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1 \\
\end{bmatrix} : \text{hit/match}
\]

\[
\begin{bmatrix}
-1 & -1 & -1 \\
0 & 1 & 0 \\
1 & 1 & 1 \\
\end{bmatrix} \cdot \begin{bmatrix}
-1 & -1 & -1 \\
1 & -1 & -1 \\
1 & 1 & 1 \\
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
0 & -1 & 0 \\
1 & 1 & 1 \\
\end{bmatrix} : \text{miss/no match}
\]
SE with “Don't Care” Entries

- Zeros in SE for erosion and dilation are actually “Don't-Cares”.
- For hit-or-miss transform, “don't-cares” are conventionally shown as blanks or 'X' in the kernel to avoid confusion. This particular element can be used to find corners:

```
\[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
\end{array}\]
```

- 4 other SEs used for corner finding in binary images. They are actually the same element, but rotated by different angles:

```
\[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
\end{array}\]
\[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}\]
\[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}\]
\[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}\]
```
Simplification of Hit-or-Miss Transform

• Hit-or-miss transform can be reduced to simple erosion to simplify calculations – No background \((B_2)\) matching is needed.

\[
A \ast B = (A \ominus B_1) \cap (A^c \ominus B_2) \quad \Rightarrow \quad A \ast B = (A \ominus B_1)
\]

• This simplification reduces the complexity of calculations but also causes a higher likelihood of inaccurate hits. (Some applications are not critical on the accuracy)
Morphological Functions in Matlab

- `dilate`
- `erode`
- `bwmorph` – special collection of pre-defined morphological operations on binary image
- Look under “Binary image operations” in Image Processing Toolbox Help for other functions that are useful for processing binary images.
Morphological Functions in Matlab

- To extract image components that are useful in representation and description of shape

- Next week:
 - Boundary Extraction
 - Hole Filling
 - Connected Components
 - Convex Hull
 - Thinning
 - Thickening
 - Skeletonization
 - Pruning
Recommended Readings

- Digital Image Processing (3rd Edition), Gonzalez & Woods,
 - Chapter 9: Morphological Image Processing
 - 9.1 – 9.4 (Week 8)
 - Chapter 9: Morphological Image Processing
 - 9.5 (Week 9)